

Statistische Ableitung des LAI für Grünland aus RapidEye-Daten und In-situ-Messungen

Untersuchungen in dem Einzugsgebiet der Ammer

Heiko Fabritius Lehrstuhl für Fernerkundung, Universität Würzburg

Motivation & Fragestellungen

Quelle: Eigene Abbildungen

Wiese \neq Wiese

1 Liefert die Korrelation in situ gemessener LAI-Werte und aus Satellitendaten berechneter Vegetationsindizes signifikante Zusammenhänge?

Wie gut kann der LAI auf dieser Grundlage mittels einer Regression flächendeckend abgeleitet werden?

- 2 Welche Ergebnisse liefert eine Zusammenführung der LAI- und VI-Wertepaare aller Zeitschritte?
- **3** Führen die Rededge-Indizes zu besseren Korrelationen?

Untersuchungsgebiet

- Hauptsächlich Wiesen, Weiden und Waldfragmente
- Kleingliedrige Landschaft
- 3-5 Mahden/Jahr (Mäh- und Umtriebsweiden)
- Hohe zeitliche und räumliche Variabilität der Landschaft
- Verschiedene phänologische Zustände gleichzeitig

Quelle: Eigene Abbildungen

Feldmessungen - Theorie

Messgerät: LAI 2000 plant canopy analyzer

- Stralungsintensitätsmessungen ober- und unterhalb der Vegetation
- Ableitung der gap fraction bzw. der Transmissivität
- Unterschiede bei der LAI-Berechnung nach Miller (1967) und Lang (1987)
- Bei Lang werden alle 5 Sensorringe gleich gewichtet
- Bessere Übereinstimmung zwischen den LAI-Werten nach Lang und den destruktiv ermittelten LAI-Werten

Quelle: Li-Cor 2009

Feldmessungen - Sampling Design

- 4 Plots mit bis zu 33 ESUs
- 20 Messungen pro ESU
- Anwendung der 270° view cap
- Der Sensor wurde bei jeder Messung abgeschattet
- mittlere Standartabweichung der Messungen: 0,16 (Mittelwert: 2,18)

Fernerkundungsdaten

Rapid Eye Daten

- Level 1B Daten: Vorprozessierung in CATENA (DLR)
- Räumliche Auflösung: 6,5m
- Spektrale Auflösung:

Quelle: rapideye.com

- Szenen:9. Mai, 25. Mai und 6. September, 2011
- Manuelle Ausmaskierung von Wasser, Wolken und Wolkenschatten

Quelle: Eigene Abbildung

Landbedeckungsklassifikation

- Maximum-Likelihood-Klassifikation mittels Ground Truth Daten und Google Earth Daten
- Notwendig für die Extraktion der Grünlandflächen

	Producers	Accuracy	Users Accuracy		
Klasse	Prozent	Pixel	Prozent	Pixel	
Acker	98.28	229/233	100.00	229/229	
Offener Boden	100.00	1318/1318	98.80	1318/1334	
Wald	80.90	3172/3921	99.56	3172/3186	
Wiese	99.52	4101/4130	86.81	4101/4861	
Gestein/ Bausubstanz	100.00	475/475	95.77	475/496	
Hausdächer	99.03	102/103	100.00	102/102	
Schnee	89.26	108/121	100.00	108/108	
Schatten	85.15	86/101	100.00	86/86	

• Problem:

Felder mit Winterweizen Anfang Mai nicht von Grünland zu unterscheiden

• Lösung:

NDVI Schwellenwertverfahren mittels des September Zeitschrittes => Multitemporales Verfahren

Quelle: Eigene Abbildung

Angewandte Vegetationsindizes

gängige Indizes	rededge Indizes
$NDVI = \frac{NIR - RED}{NIR + RED}$	$NDVI_{rededge} = \frac{NIR - REDEDGE}{NIR + REDEDGE}$
$RVI = \frac{NIR}{RED}$	$RRI1 = \frac{NIR}{REDEDGE}$
$RDVI = \frac{NIR - RED}{\sqrt{NIR + RED}}$	$RRI 2 = \frac{REDEDGE}{RED}$
$SAVI = \frac{(1+L)*(NIR - RED)}{(NIR + RED + L)}$	

Vegetationsindizes - Sensitivitäten

Prozessschema der Untersuchung

> Motivation > Untersuchungsgebiet > Datengrundlage & Vorprozessierung > Statistische LAI-Ableitung > Ergebnisse & Fazit 10

Korrelationen & Regressionen

> Motivation > Untersuchungsgebiet > Datengrundlage & Vorprozessierung > Statistische LAI-Ableitung > Ergebnisse & Fazit 11

LAI-Karten der gesamten Szene

06.09.2011 (KW 36)

25.05.2011 (KW 21)

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

Beispielausschnitte der LAI-Karten

25.05.2011 (KW 21)

06.09.2011 (KW 36)

Quelle: Eigene Abbildungen

Statistische LAI-Ableitung

 \rightarrow Lineare Regressionsfuktion: LAI = 1,75 * RRI1 – 3,013

 $R^2 = 0,61$

Quelle: Eigene Abbildung

1

2

3

Ergebnisse & Fazit

	KW 18	KW 21	KW 36	 	
R ² - Wert	0,43	0,83	0,74		
RMSE	/	0,45	0,62		*

	KW 18	KW 21	KW 36	
R ² - Wert		0,62		
RMSE	1,02	0,71	0,71	

R ² -Werte gängiger und rededge Indizes					
Modell	Woche	RVI	RRI1	NDVI	NDVI _{rededge}
exponentiell	KW 21	0,52	0,83	0,60	0,77
	KW 36	0,74	0,74	0,62	0,70

Vielen Dank für ihre Aufmerksamkeit!

Literatur

- COLOMBO, R., BELLINGERI, D., FASOLINI, D. & MARINO, C. M. (2003): Retrieval of leaf Area Index in different vegetation types using high resolution satellite data. – Remote Sensing of Environment, 86: 120 – 131.
- DARVISHZADEH, R., SKIDMORE, A., SCHLERF, M. & ATZBERGER, C. (2008): Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. – Remote Sensing of Environment, 112: 2592 – 2604.
- EHAMMER, A. (2011): Statistical derivation and regional mapping of fPAR and LAI for irrigated cotton and rice using multi-temporal RapidEye data and ground measurements. A case study for the Khorezm province, Uzbekistan. Diploma Thesis. Faculty of Geo- and Atmospheric Sciences Innsbruck, 85 S.
- HE, Y., GUO, X. & WILMSHURST, J. (2006): Studying mixed grassland ecosystems 1: Suitable hyperspectral vegetation indices. Canadian Journal of Remote Sensing, Vol. 32, No. 2: 98 107.
- JONCKHEERE, I., FLECK, S., NACKAERTS, K., MUYS, B., COPPIN, P., WEISS, M. & BARET, F. (2004): Review of methods for in situ Leaf Area Index determination Part I. Theories, sensors and hemispherical photography. – Agricultural an Forest Meteorology, 121: 19 – 35.
- LI-COR (1992): LAI-2000 plant canopy analyzer. Instruction manual. Li-Cor, 175 S.
- LI-COR (2009): LAI-2200 plant canopy analyzer. Instruction manual. Li-Cor, 217 S.
- VUOLO, F., ATZBERGER, C., RICHTER, K., D'URSO, G. & DASH, J. (2010): Retrieval of biophysical vegetation products from RapidEye imagery. – In: W. Wagner und B. Székely (Hrsg.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5 – 7, 2010, IAPRS, Vol. XXXVIII, Part 7A: 281 – 286.